
ConflictDetector User Guide
Version 1.0, October 2011

Corporate Headquarters
iPass Inc.
3800 Bridge Parkway
Redwood Shores, CA 94065 USA

 www.ipass.com
+1 650-232-4100
+1 650-232-0227 fx

Copyright © 2011, iPass Inc. All rights reserved.
Trademarks
iPass, iPassConnect, ExpressConnect, iPassNet, RoamServer, NetServer, iPass Mobile Office, DeviceID, EPM, iSEEL,
iPass Alliance, Open Mobile, and the iPass logo are trademarks of iPass Inc.
All other brand or product names are trademarks or registered trademarks of their respective companies.
Warranty
No part of this document may be reproduced, disclosed, electronically distributed, or used without the prior consent of the
copyright holder.
Use of the software and documentation is governed by the terms and conditions of the iPass Corporate Remote Access
Agreement, or Channel Partner Reseller Agreement.
Information in this guide is subject to change without notice.
Every effort has been made to use fictional companies and locations in this manual. Any actual company names or
locations are strictly coincidental and do not constitute endorsement.

TABLE OF CONTENTS

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 3

1 Introduction 5

1.1 What is ConflictDetector? .. 5
1.2 Configuring ConflictDetector .. 5
1.3 User Interaction ... 5

2 ConflictDetector Basics 6

2.1 Basic Terms ... 6
2.2 Basic ConflictDetector Operations ... 6

3 ConflictDetector XML Configuration 8

3.1 Top-Level Structure ... 8
3.2 Resources Element ... 8
3.3 Conflict Element ... 9

4 XML Vocabulary 11

4.1 Conventions ... 11
4.2 Trigger Vocabulary .. 11
4.3 Expression Vocabulary .. 12
4.4 Actions ... 15

5 XML Expressions 17

5.1 Operators ... 17
5.2 Custom Variables .. 18
5.3 XML Expressions ... 19

6 Lessons 21

6.1 Lesson 1: ConflictDetector Basics ... 21
6.2 Lesson 2: Streamlining Scripts Using Resources.. 27
6.3 Lesson 3: User-Triggered Actions ... 29
6.4 Lesson 4: Learning the Simulation Environment ... 32
6.5 Lesson 5: Self-Diagnostic and Script Debugging .. 42

7 Real Life Examples 45

7.1 Cisco NAM ... 45

TABLE OF CONTENTS

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 4

7.2 OM / IPC Switching .. 46

8 Advanced Topics 47

8.1 ConflictDetector as a State Machine ... 47
8.2 Serial Processing Nature ... 47

Introduction

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 5

1 Introduction

1.1 What is ConflictDetector?
ConflictDetector is a general framework for detecting and resolving specific conflicts in the system.

This document applies ConflictDetector to resolve conflicts between the Open Mobile Connection Manager and other
connections managers. Connection managers use various system resources (such as network adapters, networks,
etc.) and some require exclusive use of these resources. This may interfere with Open Mobile operations, resulting in
conflicts. Therefore, Open Mobile needs to detect and resolve such conflicts to function with these connection
managers. Ideally, this should happen non-intrusively with maximum transparency to the user.

1.2 Configuring ConflictDetector
ConflictDetector configuration is defined in the ConflictDetectionConfig.xml file located in the Open Mobile
Profile. This file can contains one or more Conflict Definitions.

Creating a Conflict Definition is an involved, manual process that requires a knowledgeable IT engineer. To simplify
this process, iPass provides numerous Conflict Definitions. This includes the Conflict Definitions for the most
commonly used connections managers, such as Cisco NAM and Funk/Juniper Odyssey. Multiple generic samples
are also provided.

Those samples can be downloaded from the iPass Open Mobile Portal or they can be provided separately upon
request.

1.3 User Interaction
The ConflictDetector can switch between connections managers (according to network visibility, location, and other
factors) without the user’s awareness. However, the administrator may configure ConflictDetector to interact with the
user:

 To allow users to manually resolve conflicts

 To display alert messages when conflicts are resolved

ConflictDetector Basics

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 6

2 ConflictDetector Basics
The ConflictDetector’s basic functions can be explained using the simple example of a motion sensor. The function of
a motion sensor is to turn on the light when it is dark and when movement is detected. This example contains all of
the elements necessary to describe basic ConflictDetector functionality and terms.

2.1 Basic Terms
The following list of terms are followed by their equivalent in the motion sensor example

2.1.1 Major Terms

 Conflict Title: The room is dark.

 Applicability: The motion sensor is installed.

 Condition: Is the room dark?

 Resolve Conflict Trigger: On motion detected.

 Resolve Conflict Actions: Turn the light on.

 Restore State Trigger: Motion no longer detected.

 Restore State Actions: Turn the light off.

2.1.2 Conflict States

 Conflict Absent: The room is lit because there is daylight or someone manually turned on a light. Since
the motion sensor did not resolve the conflict, it cannot restore the state (to darkness).

 Conflict Present: The room is dark.

 Actively Enforced: Someone enters the dark room triggering the motion sensor, and the motion sensor
resolves the conflict by turning on the light. We call this Enforcement.

 Failure to Resolve the Conflict: In case the light bulb is burnt-out or absent, Motion Sensor turns the
switch on, but the darkness condition is still present. Therefore, the Motion Sensor detects that it failed
to resolve the condition.

The following table shows these states (as depicted in the ConflictMonitor):

Conflict State Conflict Depiction Enforced
Absent The room is dark
Present The room is dark
Resolved The room is dark V
Failed The room is dark

2.2 Basic ConflictDetector Operations
There are two basic ConflictDetector operations:

 Trigger Processing

 Conflict Monitoring

2.2.1 Trigger Processing
The ConflictDetector processes each Conflict Definition by performing the following actions:

1. Checks Applicability. If the condition is inapplicable (if the motion sensor is not installed), it skips the

conflict processing.

ConflictDetector Basics

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 7

2. When the conflict is in a non-enforced state (the lights are off), on Resolve Conflict Trigger (the motion is
detected) the Condition (is the room dark?) is checked. If the condition is true (it is dark), the Resolve
Actions are performed (the lights are turned on). Then the condition is checked again.

 If the condition is evaluated as false (it is no longer dark) the conflict is considered Actively
Enforced.

 If the condition is evaluated as true (it is still dark) the conflict is considered Failed.

3. When the conflict is in an enforced state (the motion sensor turned on the lights), on Restore State
Trigger (no motion is detected):

 The Condition is checked (is it dark?).

 If the condition is false (the room is lit), the Restore Actions are performed (the lights are
turned off).

 The conflict state becomes non-enforced.

2.2.2 Conflict Monitoring
The ConflictDetector is actively trying to enforce the right state. However, conditions may change beyond the
ConflictDetector’s control. Using the motion sensor as an example:

 When the room is dark, someone turns on a light.

 After the condition is enforced (the motion sensor turns on the light), someone turns off the light.

 The light bulb fails.

ConflictDetector monitors conflict conditions on a regular time interval. If the conflict condition is changed, the conflict
state is properly updated.

Monitoring PollInterval is defined in ConflictDetectionConfig.xml. A typical time interval is about 10 seconds.

ConflictDetector XML Configuration

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 8

3 ConflictDetector XML Configuration
This chapter introduces ConflictDetector configuration, which is expressed in XML. This configuration is general and
could be applied to multiple domains.

3.1 Top-Level Structure
ConflictDetectionConfig.xml has two main sections: Resources and Conflicts.

<ConflictDetectionConfig>
 <Resources>
 </Resources>
 <Conflicts>
+ <Conflict>
+ <Conflict>

 </Conflicts>
 </ConflictDetectionConfig>

3.2 Resources Element
The Resources element contains two sections: Variable and Actions.

 <Resources>
 <Variables>
+ <int.var.def id="intVar1">
+ <bool.def id="boolVar2">
+ <int.var.def id="intVar3">
 </Variables>
 <Actions>
+ <action.def id="action1">
+ <action.def id="action2">
 </Actions>
 </Resources>

Variable and Actions definitions are described in the Expressions section. Below is an example that defines the
Boolean function IsWiFiEnabled and Action EnableWiFi.

 <Resources>
 <Variables>
 <bool.def id="IsWiFiEnabled">
 <IsMediaManaged MediaType="WiFi"/>
 </bool.def>
 </Variables>
 <Actions>
 <action.def id="EnableWiFi">
 <ManageMedia MediaType="WiFi"/>
 <Sleep Time="00:00:10"/>
 </action.def>
 </Actions>
 </Resources>

1. Resources: defines resources that are used in the Conflicts section.

2. Conflicts: defines conflicts, one at a time,

1. Variables: defines variables.

2. Actions: defines actions.

ConflictDetector XML Configuration

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 9

3.3 Conflict Element

Each Conflict element defines a separate conflict in the system. Below is an example:

 <Conflict id="NotepadCalcExclusion" Title="Allow Notepad only if Calc is not running">
 <IsApplicable>
 <ResolveConflict>
+ <Triggers>
+ <Condition>
+ <Actions>
 </ResolveConflict>
 <RestoreState>
+ <Triggers>
+ <Actions>
 </RestoreState>
 </Conflict>

ConflictDetector XML Configuration

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 10

The Conflict element consists of the following:

XML Tag Description

<Conflict id=”[id]” Title=”[Title]”> This header contains id and Title. id is used to refer to this conflict
programmatically. Title is used to display the conflict in the ConflictMonitor User
Interface.

<IsApplicable> Defines whether this conflict exists in the system. For example, whether a
particular program is installed or a service is defined.

<ResolveConflict> Defines how to detect and resolve a conflict. It contains the following elements:

 <Triggers> that defines when to check for the conflict

 <Condition> that defines the condition under which the conflict is present;

 <Actions> that defines the actions that will resolve the conflict.

<RestoreState> Used to define when and how to restore the original state (or reverse the previous
actions). It contains the following elements:

 <Triggers> that define when to restore the state (only occurs if the
<Condition> is false)

 <Actions> that defines actions that will restore the state.

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 11

4 XML Vocabulary
ConflictDetector framework is a general framework that applies to multiple technology domains. Adapting it to a
specific domain requires a domain-specific vocabulary. This chapter defines Connection Manager Vocabulary that
allows ConflictDetector to resolve conflicts between Open Mobile and other connection managers.

The vocabulary is divided into:

 Trigger Vocabulary

 Expressions Vocabulary

 Action Vocabulary

4.1 Conventions
The vocabulary entries are described in a tabular form. For example:

Function Attributes Description

IsConnectionStateEq opt MediaType
req ConnectionState

Checks if the current connection state for MediaType is equal
to a specified ConnectionState (Connected, Warm,
Disconnected).

Function: (IsConnectionStateEq) defines its name.

Attributes: The function may have attributes (MediaType, ConnectionState). Optional attributes are marked with an
opt prefix. If a parameter is not marked as optional, it is required. For clarity and symmetry some required parameters
are marked with a req prefix.

4.2 Trigger Vocabulary
Trigger vocabulary defines various trigger points where the ConflictDetector checks the state in order to perform
certain actions.

Trigger Name Attributes Description

OnUserRequest Message This defines a user trigger. Message is used as a trigger caption (for
example, displayed on a trigger button). The trigger is triggered when the
user requests the action (for example, by pushing the button).

OnCondition Requires a condition (Boolean expression) as a child element. Triggered

when the condition is evaluated to true.
OnConditionRef idref Similar to OnCondition, but the condition is provided by idref. Triggered

when the condition is evaluated to true.

OnServiceStart Triggered when OM starts (on service start).
OnServiceStop Triggered just before OM stops (on service shutdown).
OnWakeup Triggered on waking up from sleep or hibernation.

OnLaunchingUI Triggered when OM UI is launched.
OnExitingUI Triggered when OM UI exits.

OnInternetPreconnect Triggered just before the Internet connection starts.
OnInternetDisconnected Triggered after the Internet gets disconnected.

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 12

4.3 Expression Vocabulary
Expressions here are typical mathematical expressions. As a typical mathematical expression, an expression
consists of variables and operators applied to the variables. Variable is defined using a predefined vocabulary.

An expression is evaluated into a value. The resulting value type determines the expression type. Currently, we
support the following expression types:

 Boolean (or logical) expressions

 Integer expressions

 String expressions

Other expression types may be added in the future, as needed.

A vocabulary is subdivided into the following vocabulary groups:

 Boolean vocabulary

 Integer vocabulary

 Version vocabulary

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 13

4.3.1 Boolean Vocabulary
Boolean vocabulary defines functions returning Boolean values:

Function Attributes Description
IsMediaManaged MediaType Checks if the specified media (Wi-Fi, Ethernet, Mobile Broadband) is

managed by Open Mobile.

IsConnectionStateEq opt MediaType

req
ConnectionState

Checks if the current connection state for MediaType is equal to a
specified ConnectionState (Connected, Warm, Disconnected).

 Warm means non-disconnected.

 If MediaType is omitted, the function checks if any media has
a specified ConnectionState.

IsDirExist DirName Checks if the specified dir exists
IsFileExist FileName Checks if the specified file exists

IsProcessRuning ProcessName Checks if the specified process is running
IsServiceExist ServiceName Checks if the specified service exists
IsServicePaused ServiceName Checks if the specified service is paused
IsServiceRunning ServiceName Checks if the specified service is running
IsNetworkPresent opt MediaType

opt NetworkName
opt Is8021x
opt
IsNonBroadcast
opt
ConnectionState

Checks if at least one network with the defined attributes is present.
All the attributes are optional. If an attribute is missing, it is irrelevant
for matching:

 If none of the attributes are specified, it is triggered if any
network is present

 If only MediaType is specified, it is triggered if a network with
this MediaType is present

 If only NetworkName is specified, it is triggered if a network
with this NetworkName is present

 If only Is8021x is specified, it is triggered if any 8021x network
is present

 If only IsNonBroadcast is specified, it is triggered if any non-
broadcast network is present

 If NetworkName and Is8021x are specified, it is triggered if a
network with this NetworkName is present and it is an 8021x

IsConnectedTo-
-CorporateNetwork

opt CNDName Checks if connected to a corporate network.

IsRegistryPresent req Key

opt ValueName
Checks if the specified registry is present.

IsRegistryEq req Key
req ValueName
req To

Checks if the specified registry value is equal to the specified To
value.

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 14

4.3.2 Integer Vocabulary
Integer vocabulary defines functions returning Integer values.

Function Attributes Description
OSVersion.Major Returns OS Major Version number
OSVersion.Minor Returns OS Minor Version number

4.3.3 Version Vocabulary
Version vocabulary defines functions returning version values. A version is defined as a string. A typical version string
is represented in “int.int.int” format. For example: “3.436.25”. For more details see the Version Operators below.

Function Attributes Description
FileVersion FileName Returns file version. Typically used with .exe and .dll files.

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 15

4.4 Actions
The following Actions are defined:

Action Description
Sleep(Time) Sleeps for the specified time

InformUser(Messsage) Displays a specified Message to the user
ReprobeNetwork(MediaType, NetworkName) Refreshes a network
ReprobeNetworks(MediaType)
{
 Network(NetworkName)
 …
 Network(NetworkName)
}

Refreshes a list of networks

ManageMedia(MediaType) Allows Open Mobile to manage the specified media
UnmanageMedia(MediaType) Disallows Open Mobile to manage the specified media

StartProcess(opt Context , ProcessName, opt Args) Starts the process in the specified context. Default is the

User context. Arguments to the process are provided in
Args.

StopProcess(ProcessName) Stops the specified process
StartService(ServiceName) Starts the specified service
PauseService(ServiceName) Pauses the specified service
ResumeService(ServiceName) Resumes the specified service
StopService(ServiceName) Stops the specified service

SetRegistry(Key, ValueName, Value) Sets the specified registry.
RemoveRegistry(Key) Removes the specified registry.

While(opt MaxTime, opt MaxCount)
{
 opt Condition
 opt Actions
}

Executes multiple actions in the while-loop. The loop
exists when MaxCount is exhausted, MaxTime is
exhausted, or Condition fails.

action.ref(idref) Executes a custom action (more details below).

4.4.1 While Action

XML Vocabulary

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 16

While-action allows the execution of multiple actions in the loop. It loops until optional MaxCount is exhausted,
optional MaxTime is exhausted, or Condition fails.

Its main purpose is to wait until some external condition is met. For example, after starting a third-party connection
manager it waits up to 20 sec until the third party user interface is displayed (as shown in the following XML):

 <Actions>
 <StartProcess ProcessName="nam.exe"/>
 <While MaxTime="00:00:20">
 <Condition>
 <not><IsProcessRunning ProcessName="namgui.exe"/></not>
 </Condition>
 <Actions>
 <Sleep Time="00:00:20"/>
 </Actions>
 </While>
 </Actions>

While-action does not have any default timeouts and must be used very carefully.

4.4.2 Custom Actions
The framework allows for the creation of a custom action, an action that contains or refers to other actions. For
example:

 <action.def id="EnableWiFi">
 <ManageMedia MediaType="WiFi"/>
 <Sleep Time="00:00:10"/>
 </action.def>

XML Expressions

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 17

5 XML Expressions
XML expressions are typical mathematical expressions. As a typical mathematical expression it consists of variables
and operations applied to the variables.

An expression is evaluated into a value. The resulting value type determines the expression type. Currently we
support the following expression types:

 Boolean (or logical) expressions

 Integer expressions

 String expressions

5.1 Operators
Operators are divided into the following groups:

 Boolean operators

 Integer operators

 Version operators

5.1.1 Boolean Operators
Boolean operators are conventional operators returning Boolean values.

Operator Attributes Description
bool.const value Defines Boolean constant (true or false).

not Logical not operator.
and Logical and operator. Two or more Boolean operands are expected.
or Logical or operator. Two or more Boolean operands are expected.

not.ref idref Equivalent to not operator, except the Boolean condition is provided

by the reference.

int.neq
int.lt
int.leq
int.eq
int.geq
int.gt

 Compare 2 integers for non-equality, less, less-or-equal, equal,
greater-or-equal, greater respectively.

string.eq Checks if two strings are equal

5.1.2 Integer Operators
Integer operators are conventional mathematical operators returning integer values.

Operator Attributes Description
int.const value Defines integer constant

int.add
int.sub
int.mul
int.div
int.mod

 Conventional integer operators

XML Expressions

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 18

5.1.3 Version Operators
Version operators are non-conventional operators comparing versions (as returned by FileVersion).

Operator Attributes Description
version.neq
version.lt
version.leq
version.eq
version.geq
version.gt

 Compare a version against a pattern for non-equality, less, less-or-equal,
equal, greater-or-equal, greater respectively.

Using this comparison:

“1.1” equal “1.1”
“1.1” equal “1.x”
“1.2.foo” equal “1.x”
“1.1” greater “1.0”
“1.1” greater “1.0.999”
“1.1” greater “1.0.x”

5.2 Custom Variables
Custom variables can be defined. A custom variable represents an expression. It could be a simple expression, such
as a constant or a reference to a predefined vocabulary function. It could be a complex expression, which may
contain operations and other custom variables. Currently, we support Boolean and Integer variables. A variable is
identified by id and is defined by providing an expression body. For example:

 <bool.def id="IsWiFiEnabled">
 <IsMediaManaged MediaType="WiFi"/>
 </bool.def>

 <bool.def id="IsMBEnabled">
 <IsMediaManaged MediaType="MB"/>
 </bool.def>

The custom variables can be used in conditions. They can also be used to create more complex variables. For
example:

 <bool.def id="IsMediaManaged">
 <or>
 <bool.ref idref="IsWiFiEnabled"/>
 <bool.ref idref="IsMBEnabled"/>
 </or>
 </bool.def>

Operator Attributes Description
bool.def id Defines Boolean variable
int.def id Defines Integer variable
bool.ref idref Reference to a Boolean variable
int.ref idref Reference to an Integer variable

Attribute ‘id’ specifies a variable name. Its XSD type is “xs:ID”. It imposes some beneficial restrictions on valid names:

1. The name should be syntactically correct. It must begin with a letter and cannot contain empty spaces or
special characters. The valid names are Foo, Bar, Foo1234, foo_bar, foo.bar, foo-bar. The following names
are invalid: 4Foo, foo@bar, foo%bar.

XML Expressions

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 19

2. Variable names must be unique throughout the XML document.

A validating XML editor will enforce the syntax.

5.3 XML Expressions
The vocabulary and operators are used to create XML expressions. The framework allows for creating expressions of
any complexity. These expressions are represented as valid XML and the validity is strongly checked against the
Schema. An XML expression is represented in the form where the operator precedes the operands. This is called a
Polish Notation—a typical computer representation of the expressions. Polish notation is used in a number of
languages: Lisp, Forth, and Postscript.

5.3.1 Polish Notation
In the Polish Notation the operator precedes the operands. Here are some examples of how the conventional
expressions are translated to Polish Notation:

Conventional Expression Polish Notation

(1 + 2 + 3) (add 1 2 3)
(5 * 6 * 7) (mul 5 6 7)
((1 + 2 + 3) * (5 + 6 + 7)) (mul (add 1 2 3) (add 5 6 7))
(a | b) (or a b)
(a | b | (~c)) (or a b (not c))
(a & b & (~c)) (and a b (not c))
(x == 5) (eq x 5)
((x + y + z) == 5) (eq (add x y z) 5)

XML Expressions

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 20

5.3.2 XML Notation
XML notation used in ConflictDetector corresponds one-to-one to Polish Notation. Here are some the above
examples represented in XML form:

Conventional Expression Polish Notation Polish Notation

(1 + 2 + 3) (add 1 2 3) <int.add>
 <int.const value="1"/>
 <int.const value="2"/>
 <int.const value="3"/>
</int.add>

(5 * 6 * 7) (mul 5 6 7) <int.mul>
 <int.const value="5"/>
 <int.const value="6"/>
 <int.const value="7"/>
</int.mul>

((1 + 2 + 3) * (5 + 6 + 7)) (mul (add 1 2 3) (add 5 6 7)) <int.mul>
 <int.add>
 <int.const value="1"/>
 <int.const value="2"/>
 <int.const value="3"/>
 </int.add>
 <int.add>
 <int.const value="5"/>
 <int.const value="6"/>
 <int.const value="7"/>
 </int.add>
</int.mul>

(a | b) (or a b) <or>
 <bool.ref idref="a"/>
 <bool.ref idref="b"/>
</or>

(a | b | (~c)) (or a b (not c)) <or>
 <bool.ref idref="a"/>
 <bool.ref idref="b"/>
 <not><bool.ref idref="c"/></not>
</or>

(x == 5) (eq x 5) <int.eq>
 <int.ref idref="x"/>
 <int.const value="5"/>
</int.eq>

((x + y + z) == 5) (eq (add x y z) 5) <int.eq>
 <int.add>
 <int.ref idref="x"/>
 <int.ref idref="y"/>
 <int.ref idref="z"/>
 </int.add>
 <int.const value="5"/>
</int.eq>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 21

6 Lessons
In this section, we will demonstrate the ConflictDetector by walking through some examples. Though the examples
are simple, most of the aspects of the technology are covered in this section.

The following examples assume that UserGuide folder is located in the C:\XML folder. Before unzipping
UserGuide.zip, create a C:\XML folder, then unzip UserGuide.zip and place the contents in the C:\XML folder.
The folder contains the following files:

• ConflictDetector-UserGuide.docx
• ConflictDetectionConfig.xsd
• VersionOps.xsd
• XmlActions.xsd
• XmlExpressions.xsd
• XmlVocabulary.xsd
• *.xml - samples files

6.1 Lesson 1: ConflictDetector Basics
This lesson uses NotepadCalc.xml found in the UserGuide folder.

6.1.1 Conflict Definition
In this simple use case, we allow Notepad to run only if Calculator is not running.

 <Conflict id="NotepadCalcExclusion" Title="Allow Notepad only if Calc is not running">
 <IsApplicable>
 <IsFileExist FileName="C:\Windows\System32\notepad.exe"/>
 </IsApplicable>
 <ResolveConflict>
 <Triggers>
 <OnCondition>
 <IsProcessRunning ProcessName="calc.exe"/>
 </OnCondition>
 </Triggers>
 <Condition>
 <IsProcessRunning ProcessName="notepad.exe"/>
 </Condition>
 <Actions>
 <StopProcess ProcessName="notepad.exe"/>
 </Actions>
 </ResolveConflict>
 <RestoreState>
 <Triggers>
 <OnCondition>
 <not>
 <IsProcessRunning ProcessName="calc.exe"/>
 </not>
 </OnCondition>
 </Triggers>
 <Actions>
 <StartProcess ProcessName="notepad.exe"/>
 </Actions>
 </RestoreState>
 </Conflict>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 22

XML Tag Description

<IsApplicable> The conflict is applicable only if file C:\Windows\System32\notepad.exe
exists. Otherwise, this conflict is ignored.

<ResolveConflict> Defines how to detect and resolve a conflict and contains the following elements:

 <Triggers> A general OnCondition trigger is used. It contains a Boolean
expression that checks if calc is running.

 <Condition> The condition is evaluated to true if notepad is running. This
indicates the conflict presence and the Actions are taken.

 <Actions> The action kills Notepad.

<RestoreState> Used to define when and how to restore the original state (or reverse the previous
actions) only if the conflict was actively resolved. It contains the following elements:

 <Triggers> When calc is not running the Condition is periodically checked.

 <OnCondition> If the condition defined in ResolveConflict is evaluated to
false (i.e. if notepad is not running), the restore Actions are taken.

 <Actions> The restore action is to start Notepad.

6.1.2 Testing the Sample

6.1.2.1 Set ConflictDetectionConfig.xml
Copy the sample to your Open Mobile profile directory (the directory that contains Engine.XMl) and rename it to
ConflictDetectionConfig.xml. Start or Restart iPlatformService:

6.1.2.2 Start Notepad
Make sure that Calc is not running. Start Notepad.

6.1.2.3 Start Calculator
After Calc starts, within 2 sec Notepad is killed. The conflict is resolved and actively enforced.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 23

6.1.2.4 Close Calculator
Close calculator and observe that Notepad reappears.

6.1.2.5 Change ConflictDetector Poll Interval
Open ConflictDetectionConfig.xml and modify TimeInterval (located close to the top of the file) to 10 sec:

 <Debug WatchConfigFile="true"/>
 <PollInterval TimeInterval="00:00:10"/>
There is no need to restart the service because WatchConfigFile is set to true.

Start and close Calc a few times. Notice that Notepad is closed within 0 to 10 sec and reappears also within 0 to 10
sec.

6.1.2.6 Restore TimeInterval.
Close Calc and make sure Notepad is running.

6.1.3 ConflictMonitor
ConflictMonitor is a tool for monitoring a conflict state.

6.1.3.1 Enabling and Starting ConflictMonitor
The default location for ConflictMonitor is:

C:\Program Files\iPass\Open Mobile\omsi\Plug-ins\iPass.ConflictDetector.Plugin\ConflictMonitor.exe

It is disabled by default. To enable ConflctDetector, create a dummy file AllowConflictMonitor in the profile
directory. This file instructs ConflictDetector to establish a connection with ConflictMonitor.

Restart the service.

Start ConflictMonitor:

For the rest of the exercises keep ConflictMonitor open.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 24

6.1.4 Experiments
In this long section we will perform multiple experiments that will refresh our basic ConflictDetector understanding.

6.1.4.1 Experiment #1: start Notepad
Start Notepad and notice that the conflict becomes present (it is not crossed-out).

6.1.4.2 Experiment #2: resolving the conflict
Start Calc and notice that ConflictDetector closes Notepad. The condition is actively resolved, as indicated by the
checkmark V in ConflictMonitor under Enforced:

6.1.4.3 Experiment #3: restoring the state
Close Calc and notice that ConflictDetector restores the state by re-launching Notepad.

6.1.4.4 Experiment #4: making conflict inactive
Close Notepad and notice that the conflict becomes inactive (crossed-out).

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 25

Start Calc and notice that nothing changes. Close Calc and notice that nothing changes. This shows that the state is
restored only when the conflict is actively resolved.

6.1.4.5 Experiment #5: continuous Notepad enforcement
Start Calc and then start Notepad again. Notice that ConflictDetector closes Notepad again.

6.1.4.6 Experiment #6: restore the state
Restore the state by manually killing Calc.

6.1.4.7 Experiment #7: IsApplicable=false
Modify the config file. Make IsApplicable false by setting a wrong Notepad path:

 <IsApplicable>
 <IsFileExist FileName="C:\Windows\System32\WRONGPATH.exe"/>
 </IsApplicable>
The config file is reloaded automatically after it is saved. Notice that the conflict disappears.

Restore the config file by providing a valid Calc path.

6.1.4.8 Experiment #8: Failure to resolve a conflict
Remove ResolveConflict Actions:

 <ResolveConflict>
+ <Triggers>
+ <Condition>
 <Actions>
 </Actions>
 </ResolveConflict>
Make sure that Notepad is running and then start Calc. Notice that the ConflictDetector was unable to resolve the
conflict, as indicated in red.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 26

6.1.4.9 Experiment #9
Restore the config file and notice that the conflict becomes resolved.

6.1.4.10 Experiment #10: Zombie state
This is a more advanced topic that demonstrates what may happen after a profile update, when some conflict
definitions are removed.

Make sure you are in the enforced

Remove the Conflict from the config file:

 state, as shown in the previous experiment.

 <Conflicts>
 </Conflicts>
Notice the enforced conflict changes color:

ConflictDetector just performed a non-trivial operation of matching the new config file with the current conflict state.
Though the config file no longer contains the enforced conflict, ConflictMonitor does not remove the enforced conflict,
but marks it for removal (or puts it in the zombie state).

Kill Calc and notice that the state is restored by launching Notepad. Also notice that the conflict is removed:

6.1.4.11 Experiment #11: restore the state
Restore the config file and then enforce the state by starting Calc.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 27

6.2 Lesson 2: Streamlining Scripts Using Resources
A complete example can be found in NotepadCalc-Streamlined.xml.

6.2.1 Divide and Concur
Divide-and-concur technique is the most proven programming technique for dealing with complexity. To simplify and
streamline scripts, the administrator may define custom variables and custom actions in the Resources section of the
script. This is very similar to defining procedures in a typical programming language. There are two main reasons to
distill code into procedures:

1. When the block of code is repeated.

2. To simplify the logic of higher-level procedures by creating helper procedures (even if those procedures
are used once only).

6.2.2 NotepadCalc Deficiency
NotepadCalc defined in the previous section has somewhat verbose trigger definitions:

 <Triggers>
 <OnCondition>
 <IsProcessRunning ProcessName="calc.exe"/>
 </OnCondition>
 </Triggers>

 <Triggers>
 <OnCondition>
 <not>
 <IsProcessRunning ProcessName="calc.exe"/>
 </not>
 </OnCondition>
 </Triggers>

6.2.3 Streamlining NotepadCalc
Following the best programming practices of reducing the complexity, we should reduce the trigger definitions to a
single line. This is achieved by defining condition predicates as variables IsCalcRunning and IsCalcNotRunning
resources. Using those definitions, the above triggers can be reduced to the following:

 <Triggers>
 <OnConditionRef idref="IsCalcRunning"/>
 </Triggers>

 <Triggers>
 <OnConditionRef idref="IsCalcNotRunning"/>
 </Triggers>

6.2.3.1 IsCalcRunning Definition
IsCalcRunning is defined in Resources as:

 <bool.def id="IsCalcRunning">
 <IsProcessRunning ProcessName="calc.exe"/>
 </bool.def>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 28

6.2.3.2 IsCalcNotRunning Definition
IsCalcNotRunning can be defined in Resources as

 <bool.def id="IsCalcRunning">
 <not>
 <IsProcessRunning ProcessName="calc.exe"/>
 </not>
 </bool.def>

6.2.3.3 <not.ref> Operator
Changing the logical polarity of a Boolean expression by using the <not> operator is a common practice. To
streamline this operation, <not.ref> operator is defined. It is equivalent to <not> operator, except the reference to a
previously defined predicate variable is used. Using this operator, IsCalcNotRunning can be defined as:

 <bool.def id="IsCalcNotRunning">
 <not.ref idref="IsCalcRunning"/>
 </bool.def>

6.2.4 Conflict Definition
Here is a complete snapshot of the streamlined definition. To reduce the size, some of the unchanged sections have
been collapsed:

<ConflictDetectionConfig>
 <Resources>
 <Variables>
 <bool.def id="IsCalcRunning">
 <IsProcessRunning ProcessName="calc.exe"/>
 </bool.def>
 <bool.def id="IsCalcNotRunning">
 <not.ref idref="IsCalcRunning"/>
 </bool.def>
 </Variables>
+ <Actions>
 </Resources>
 <Conflicts>
 <Conflict id="NotepadCalcExclusion" Title="Allow Notepad only if Calc is not running">
+ <IsApplicable>
 <ResolveConflict>
 <Triggers>
 <OnConditionRef idref="IsCalcRunning"/>
 </Triggers>
+ <Condition>
+ <Actions>
 </ResolveConflict>
 <RestoreState>
 <Triggers>
 <OnConditionRef idref="IsCalcNotRunning"/>
 </Triggers>
+ <Actions>
 </RestoreState>
 </Conflict>
 </Conflicts>
</ConflictDetectionConfig>

6.2.5 Experiments
The reader is encouraged to independently run experiments similar to the previous lesson.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 29

6.3 Lesson 3: User-Triggered Actions
 A complete example can be found in UserRequests.xml.

The previous lessons resolved conflicts automatically—there was no user involvement. This is considered best
practice, but there may be some cases where user involvement would be required.

6.3.1 Conflict Definition

 Resolve Conflict: Per user request: Start Calc and Disable WiFi

 Restore State: Per user request: Kill Calc and Enable WiFi

 In both cases inform the user of the actions taken.

 <Conflict id="UserTriggers" Title="User Actions">
 <IsApplicable>
 <bool.const value="true"/>
 </IsApplicable>
 <ResolveConflict>
 <Triggers>
 <OnUserRequest Message="Start Calc and Disable WiFi"/>
 </Triggers>
 <Actions>
 <StartProcess ProcessName="calc.exe"/>
 <UnmanageMedia MediaType="WiFi"/>
 <InformUser Message="Started Calc and Disabled WiFi"/>
 </Actions>
 </ResolveConflict>
 <RestoreState>
 <Triggers>
 <OnUserRequest Message="Kill Calc and EnableWiFi"/>
 </Triggers>
 <Actions>
 <StopProcess ProcessName="calc.exe"/>
 <ManageMedia MediaType="WiFi"/>
 <InformUser Message="Killed Calc and Enabled WiFi"/>
 </Actions>
 </RestoreState>
 </Conflict>

Since the decision is not based on the state, the Condition is irrelevant and absent from the ResolveConflict element.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 30

6.3.2 Experiments

6.3.2.1 Experiment #1: Setting the Initial state
Make sure that ConflictDetector is in the state left after the previous lesson:

Copy UserRequests.xml to the profile folder and rename it ConflictDetectionConfig.xml as an
administrator. Then, start ConflictMonitor (if not started yet).

By performing the above actions we have simulated a profile update. As the result of this profile update a former
conflict definition was removed, and since it was enforced, it has transitioned to Zombie state. Remove the Zombie
state by either closing Calc or launching Notepad:

Notice “User Action” pane in ConflictMonitor that shows the text defined in ResolveConflict Trigger:

 <OnUserRequest Message="Start Calc and Disable WiFi"/>

Right-click on the Open Mobile logo in the taskbar and notice that Start Calc and Disable WiFi was added to the
menu (circled in red in the below screenshot).

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 31

6.3.2.2 Experiment #2: Resolving the Conflict
Make sure Open Mobile UI window is visible. Resolve the conflict by selecting Start Calc and Disable WiFi.

Notice the user defined message in the Open Mobile user interface:

Notice all 3 actions taken:

1. Calc started.

2. Open Mobile disabled Wi-Fi.

3. The specified Inform Message is shown.

Also notice the ConflictMonitor state:

1. The conflict is resolved, as indicated by V mark.

2. The conflict User Request Message was changed to Kill Calc and Enable WiFi.

6.3.2.3 Experiment #3: Restoring the State
In the taskbar right-click on the Open Mobile icon and select “Kill Calc and Enable WiFi”. Notice that the state is
restored and the user-defined restore message is shown

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 32

6.4 Lesson 4: Learning the Simulation Environment
This lesson introduces the Simulation Environment. In this lesson we will also learn how to create more complex
conditions. A complete example can be found in DisableWiFi.xml.

6.4.1 Conflict Definition
In this example Calc represents a 3rd party connection manager.

6.4.1.1 Resolve Condition Definition
Condition:

 NetCalc1 network or NetCalc2 network is present.
 There is no network connection (on any of type of Media).

Actions:
 Disable Open Mobile to manage Wi-Fi.
 Launch Calc.

6.4.1.2 Restore State Definition
When Calc is closed or on Wakeup

Actions:
 Enable Open Mobile to manage Wi-Fi

 <Conflict id="DisableWiFiOnCalc" Title="Disallow OM to manage WiFi if Calc is running">
 <IsApplicable>
 <IsFileExist FileName="C:\Windows\System32\calc.exe"/>
 </IsApplicable>
 <ResolveConflict>
 <Triggers>
 <OnNetworkPresent NetworkName="NetCalc1"/>
 <OnNetworkPresent NetworkName="NetCalc2"/>
 </Triggers>
 <Condition>
 <and>
 <IsConnectionStateEq ConnectionState="Disconnected"/>
 <IsMediaManaged MediaType="WiFi"/>
 <not> <IsProcessRunning ProcessName="calc.exe"/> </not>
 </and>
 </Condition>
 <Actions>
 <UnmanageMedia MediaType="WiFi"/>
 <StartProcess ProcessName="calc.exe"/>
 </Actions>
 </ResolveConflict>
 <RestoreState>
 <Triggers>
 <OnWakeup/>
 <OnProcessNotRunning ProcessName="calc.exe"/>
 </Triggers>
 <Actions>
 <ManageMedia MediaType="WiFi"/>
 <StopProcess ProcessName="calc.exe"/>
 </Actions>
 </RestoreState>
 </Conflict>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 33

6.4.1.3 IsApplicable
The conflict is applicable only if the 3rd party connection manager is installed, as checked by presence of file
"C:\Windows\System32\calc.exe". Otherwise, the conflict is ignored.

6.4.1.4 ResolveConflict

6.4.1.4.1 Triggers

<Triggers>
 <OnNetworkPresent NetworkName="NetCalc1"/>
 <OnNetworkPresent NetworkName="NetCalc2"/>
 </Triggers>

The triggers trigger if either NetCalc1 or NetCalc2 network is present.

We are using one of the forms of OnNetworkPresent. A complete definition is:

 OnNetworkPresent(opt string NetworkName, opt bool Is8021x, opt bool IsNonBroadcast)

Where opt stands for optional. Here are some examples:

OnNetworkPresent NetworkName="Owl" Is8021x="true"
IsNonBroadcast="true"

Triggered when ssid=Owl is present and it is 8021x and
it is a non-broadcast.

OnNetworkPresent IsNonBroadcast="true" Triggered when any non-broadcast network is present
OnNetworkPresent Triggered when any network is present

6.4.1.4.2 Condition

<and>
 <IsConnectionStateEq ConnectionState="Disconnected"/>
 <IsMediaManaged MediaType="WiFi"/>
 <not>
 <IsProcessRunning ProcessName="calc.exe"/>
 </not>
</and>

This defines a composite condition. It is defined in the form suitable for XML, where the operator precedes the
operands.

6.4.1.4.3 Actions

<Actions>
 <UnmanageMedia MediaType="WiFi"/>
 <StartProcess ProcessName="calc.exe"/>
</Actions>

The actions disable Open Mobile to manage Wi-Fi and start Calc.

6.4.1.5 RestoreState
<RestoreState>
 <Triggers>
 <OnWakeup/>
 <OnProcessNotRunning ProcessName="calc.exe"/>
 </Triggers>
 <Actions>
 <ManageMedia MediaType="WiFi"/>
 <StopProcess ProcessName="calc.exe"/>
 </Actions>
</RestoreState>

The state is restored on either wakeup or when Calc is closed.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 34

6.4.2 Installing and Starting the Simulation Environment
To test DisableWiFi.xml sample, you need to be able to make the networks (NetCalc1 and NetCalc2) appear and
disappear. This is where the simulation environment comes handy.

Before starting the simulation environment you must stop iPlatformService.

The simulation environment is installed automatically when starting ConflictDiagnosticTool.exe, which is
located in C:\Program Files\iPass\Open Mobile\omsi\Plug-ins\iPass.ConflictDetector.Plugin.
It must run as an Administrator. If this is your first time opening the tool, you will see a warning that there is no Config
file and the following:

This shows that the default C:\XML\ConflictDetectionConfig.xml does not exist, and as a result, no
conflicts are shown in ConflictMonitor.

After installing, verify that Diagnostic directory was created and that it contains the Networks.txt file.

Check Manage WiFi and see the available networks (as defined in Networks.txt):

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 35

6.4.3 Experiments

6.4.3.1 Experiment #1: Setting Initial state

1. Close Calc (if running).

2. Start ConflictDetectionDemo “as an administrator” (if not started yet).

3. Start ConflictMonitor.

4. Enter DisableWiFi.xml as a config file.

5. Click on Start UI button in ConflictDetectionDemo.

Start UI launces a simulation of some aspects of Open Mobile’s user interface (required for our simulation).

6.4.3.1.1 Networks

The network list comes from Networks.txt located in C:\Temp\ConflictDetection. Open the file in any of
text editor and you should see the following:

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 36

Each line defines a network. Each line has the following format:

NetworkName Media Optional Attributes
any SSID Ethernet, WiFi, MobileData owner, exclusive, 8021x, NB(non-broadcast)

The entries are separated by column ‘:’. Owner and Exclusive are irrelevant for the current lesson and will be
explained later.

Change NetCalc2X to NetCalc2XYZ and save the file. Note the immediate change in the network list:

6.4.3.2 Experiment #2: Experimenting with UI
Connect to LocalAreaConnection by selecting the network and then selecting Connect. Note the result:

Connect to NetCalc2XYZ and note the result:

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 37

Uncheck Manage WiFi.

Check Manage WiFi and then disconnect from NetCalc2XYZ.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 38

6.4.3.3 Experiment#3: Creating and Resolving the Conflict
1. Make sure Open Mobile is managing WiFi.

2. Make sure Calc is not running.

3. In the text editor, change NetCalc2XYZ into NetCalc2.

Notice that this has triggered the Conflict, which was successfully resolved by disabling WiFi and launching Calc:

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 39

6.4.3.4 Experiment#4: Restore the State
1. Rename NetCalc2 to NetCalc2X.

2. Kill Calc.

3. Notice that the state was restored:

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 40

6.4.3.5 Experiment#5: Variation on Creating and Resolving the Conflict
1. Connect to any of the networks.

2. Rename NetCalc2X to NetCalc1.

3. Notice that the conflict was not triggered because we are still connected to a network.

4. Disconnect from the network.

5. Notice that the conflict was successfully resolved

6.4.3.6 Experiment#6: Alternative Restore the State
Simulate Sleep/Wakeup sequence by pressing “Wake Up” button in ConflictDetectionDemo:

Notice that:

1. The state was restored for a fraction of a second (Calc was killed and networks reappeared).

2. This state resulted in the previous conflict.

3. The conflict was resolved (Calc reappeared and the networks disappeared)

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 41

6.4.3.7 Experiment#7: Infinite Cycling Between Resolve and Restore
A logical error in conflict definition may result in a recursive cycling between resolve and restore. Let us demonstrate
it.

1. Make sure that you are in the previously enforced state.

2. Connect to Verizon (this will prevent us from re-entering the conflict in the next step).

3. Kill Calc.

4. In the XML file, change RestoreState Triggers from OnProcessNotRunning to OnProcessRunning:

<RestoreState>
 <Triggers>
 <OnWakeup/>
 <OnProcessRunning ProcessName="calc.exe"/>
 </Triggers>
5. Disconnect from Verizon and watch the infinite Resolve/Restore sequence.

6. Stop the sequence by connecting to the Verizon network.

7. Restore the XML file to the original state.

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 42

6.5 Lesson 5: Self-Diagnostic and Script Debugging
A complete example can be found in TestManageMedia.xml.

6.5.1 Introduction
ConflictDetector provides a fairly rich vocabulary and powerful expressions. This functionality needs to be tested. The
manual testing of each vocabulary item is cumbersome and unreliable. This is why some self-reflection mechanisms
were added. The mechanisms include:

1. Special diagnostic operators: DebugMessage, DebugAssert, While

2. Extensive logging

In this lesson we will explain those mechanisms using TestManageMedia.xml sample.

6.5.2 The Sample
Since the sample is relatively large, let us split it to

 Custom Variables (Predicates)

 Custom Actions

 Resolve Conflict Section

 Restore State Section

6.5.2.1 Custom Predicates
The Resource Variables section defines IsWiFiNetworksVisible and IsWiFiNetworksInvisible custom predicates:

 <Variables>
 <bool.def id="IsWiFiNetworksVisible">
 <IsNetworkPresent MediaType="WiFi"/>
 </bool.def>

 <bool.def id="IsWiFiNetworksInvisible">
 <not.ref idref="IsWiFiNetworksVisible"/>
 </bool.def>
 </Variables>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 43

6.5.2.2 Custom Actions
The Resource Actions section defines ManageWiFi and UnmanageWiFi actions. It refers to the previously defined
predicates IsWiFiNetworksVisible and IsWiFiNetworksInvisible.

 <Actions>
 <action.def id="ManageWiFi">
 <DebugMessage Message="#### ManageWiFi Test ###"/>
 <ManageMedia MediaType="WiFi"/>
 <DebugAssert Message="WiFi networks are unavailable when WiFi media is managed">
 <Condition>
 <bool.ref idref="IsWiFiNetworksVisible"/>
 </Condition>
 </DebugAssert>
 <DebugMessage Message="#### ------------------- ###"/>
 </action.def>

 <action.def id="UnmanageWiFi">
 <DebugMessage Message="#### UnanageWiFi Test ###"/>
 <UnmanageMedia MediaType="WiFi"/>
 <DebugAssert Message="WiFi networks are visible when WiFi media is unmanaged">
 <Condition>
 <bool.ref idref="IsWiFiNetworksInvisible"/>
 </Condition>
 </DebugAssert>
 </action.def>
 </Actions>
 </Resources>

In the case of a ManageMedia test, DebugAssert statement asserts that the Wi-Fi networks are visible. This is true
only in the environments where Wi-Fi networks exist (required to run this test).

In case of UnmanageMedia test, DebugAssert statement asserts that the Wi-Fi networks are invisible.

6.5.2.3 Resolve Conflict
This is where the test is defined. The test starts when the user clicks Start Test in the Open Mobile UI or the
ConflictMonitor. The test is surrounded by captions “######" and “=====".The test runs in While loop for 2 times and
executes custom actions defined in the Resource section. After each action, it pauses for 1 sec. This allows the user
to see the effect of these actions (such as W-Fi networks appearance anddisappearance).

 <ResolveConflict>
 <Triggers>
 <OnUserRequest Message="Start Test"/>
 </Triggers>
 <Actions>
 <While MaxCount="2">
 <Actions>
 <DebugMessage Message="###"/>
 <action idref="ManageWiFi"/>
 <Sleep Time="00:00:01"/>
 <action idref="UnmanageWiFi"/>
 <Sleep Time="00:00:01"/>
 <action idref="ManageWiFi"/>
 <Sleep Time="00:00:01"/>
 <DebugMessage Message="==="/>
 </Actions>
 </While>
 </Actions>
 </ResolveConflict>

Lessons

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 44

6.5.2.4 Restore State
In an unlikely event when the test fails (or the test is modified to change the state), this section restores the state by
the user clicking Restore State.

 <RestoreState>
 <Triggers>
 <OnUserRequest Message="Restore State"/>
 </Triggers>
 <Actions>
 <action idref="ManageWiFi"/>
 </Actions>
 </RestoreState>

6.5.3 Experiments
The reader should run tests, note the results, and review the log to locate the messages defined by DebugMessage
operators.

6.5.4 Debug Messages
At this time the debug messages are only outputted to the log. In the future, they may get outputted to other channels
(such as the ConflictMonitor window).

6.5.5 Reading and Understanding the Logs
<Need to add this content>

Real Life Examples

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 45

7 Real Life Examples

7.1 Cisco NAM
A complete code can be found in Nam.xml.

7.1.1 Introduction
Nam.xml resolves the conflict between Cisco Network Access Manager (NAM) and Open Mobile. It disables NAM
when the user is trying to connect using OM and re-enables NAM only when a network managed by NAM (IATNB in
the sample) is visible.

NAM consists of NAM service (nam) and NAM UI (vpnui.exe).

Nam.xml demonstrates the benefit of separation between the main logic and resource definitions (predicates and
actions).

7.1.2 Main Logic
 <Conflict id="NAM" Title="NAM Conflicts with OM">
 <IsApplicable>
 <bool.ref idref="IsNamExist"/>
 </IsApplicable>
 <ResolveConflict>
 <Triggers>
 <OnUserRequest Message="Enable Off-Campus Mode"/>
 <OnInternetPreconnect/>
 </Triggers>
 <Condition>
 <bool.ref idref="IsNamServiceRunning"/>
 </Condition>
 <Actions>
 <action.ref idref="StopNam"/>
 </Actions>
 </ResolveConflict>
 <RestoreState>
 <Triggers>
 <OnUserRequest Message="Enable On-Campus Mode"/>
 <OnConditionRef idref="IsNamNetworkPresent"/>
 <OnServiceStop/>
 </Triggers>
 <Actions>
 <action.ref idref="StartNam"/>
 </Actions>
 </RestoreState>
 </Conflict>

7.1.2.1 IsApplicable
The conflict is applicable when NAM service exists.

7.1.2.2 ResolveConflict
The conflict exists when NAM service is running. The state is enforced when

• The user enables off-campus mode using OM UI.
• When the user attempts to connect to any of the networks.

Real Life Examples

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 46

The state is enforced by executing StopNam procedure..

7.1.2.3 RestoreState
The enforced state is restored when

• The user enables on-campus mode using OM UI.
• NAM network is present.
• When the service stops. This is especially important during OM update, where OM must restart.

The state is restored by executing StartNam procedure.

7.1.3 Custom Predicates
The custom predicates are self-explanatory.
 <bool.def id="IsNamExist">
 <IsServiceExist ServiceName="nam"/>
 </bool.def>
 <bool.def id="IsNamServiceRunning">
 <IsServiceRunning ServiceName="nam"/>
 </bool.def>
 <bool.def id="IsVpnUIVisible">
 <IsProcessRunning ProcessName="vpnui.exe"/>
 </bool.def>
 <bool.def id="IsNamNetworkPresent">
 <IsNetworkPresent NetworkName="IATNB"/>
 </bool.def>

7.1.4 Custom Actions
 <action.def id="StartNam">
 <StartService ServiceName="nam"/>
 </action.def>
 <action.def id="StopNam">
 <StopService ServiceName="nam"/>
 <ReprobeNetwork MediaType="WiFi" NetworkName="IATNB"/>
 </action.def>
StartNam just starts nam service.

StopNam is more involved. After stopping NAM service it executes ReprobeNetwork, which removes it from the
network cache and re-probes the network.

7.2 OM / IPC Switching
A complete code can be found in ipc.xml.

7.2.1 Introduction
ipc.xml resolves the conflict between Open Mobile and IPC.

Advanced Topics

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 47

8 Advanced Topics
This chapter is intended to give a deeper understanding of ConflictDetector for those who create ConflictDetector
scripts and those who debug the scripts.

8.1 ConflictDetector as a State Machine
ConflictDetector defines a set of conflicts. Each Conflict definition is a state-machine.

Here is a snapshot definition of a general state-machine:

1. It defines an enumeration of states.

2. It always resides in a distinct state.

3. It is driven by events.

4. A state defines a set of transitions to other states, according to the events.

5. The state listens for a set of the events. If a proper event arrives, a predicate is executed. If it is
evaluated to true, then the state transition occurs.

6. On entering an exiting a state, the state actions are performed.

ConflictDetector is a special state-machine. It has only two states: Enforced state and Unenforced state. As such, it
can be called a Binary state-machine or a Boolean state-machine. This Binary/Boolean behavior is exploited by using
conflict mnemonics to cross the conflict (conflict) when it is not present and use the check-mark to signify the
enforcement:

Translating the above 6 items for the ConflictDetector:

1. The ConflictDetector defines two states: Enforced and Unenforced.

2. The ConflictDetector always resides in one of those two states.

3. Triggers serve as events

4. N/A

5. If a proper trigger is triggered, a Condition element is executed. If it is evaluated to true then the state
transition occurs.

6. On entering a state, state Actions are performed.

8.2 Serial Processing Nature
ConflictDetector (as a typical state-machine) runs in a single thread. It listens to events only when it is in the idle state
(not processing actions).

Advanced Topics

Conf l ic tDetec tor User Gui de
2011 iPass Inc . 48

As a result of this serial processing, the events (triggers) can accumulate, which is undesirable. A well-behaved state-
machine avoids the event accumulation by processing long-run actions in a separate thread while staying in a special
state.

For example, ConnectionStateMachine while detecting AmIOn stays in CheckingAmIOn state. In this state it listens to
all the events and acts properly. If an event is irrelevant, it is ignored. If it is relevant (such as a Disconnect Request),
the state machine switches to the new state (e.g. Disconnecting). In either case the events are not accumulated.

Considering the Serial nature of ConflictDetector, it is recommended that users be cautious of long running
operations. In that sense TestManageMedia.xml, though a good test example, is not a good example to follow
when designing real Conflict scripts.

	1 Introduction
	1.1 What is ConflictDetector?
	1.2 Configuring ConflictDetector
	1.3 User Interaction

	2 ConflictDetector Basics
	2.1 Basic Terms
	2.1.1 Major Terms
	2.1.2 Conflict States

	2.2 Basic ConflictDetector Operations
	2.2.1 Trigger Processing
	2.2.2 Conflict Monitoring

	3 ConflictDetector XML Configuration
	3.1 Top-Level Structure
	3.2 Resources Element
	3.3 Conflict Element

	4 XML Vocabulary
	4.1 Conventions
	4.2 Trigger Vocabulary
	4.3 Expression Vocabulary
	4.3.1 Boolean Vocabulary
	4.3.2 Integer Vocabulary
	4.3.3 Version Vocabulary

	4.4 Actions
	4.4.1 While Action
	4.4.2 Custom Actions

	5 XML Expressions
	5.1 Operators
	5.1.1 Boolean Operators
	5.1.2 Integer Operators
	5.1.3 Version Operators

	5.2 Custom Variables
	5.3 XML Expressions
	5.3.1 Polish Notation
	5.3.2 XML Notation

	6 Lessons
	6.1 Lesson 1: ConflictDetector Basics
	6.1.1 Conflict Definition
	6.1.2 Testing the Sample
	6.1.2.1 Set ConflictDetectionConfig.xml
	6.1.2.2 Start Notepad
	6.1.2.3 Start Calculator
	6.1.2.4 Close Calculator
	6.1.2.5 Change ConflictDetector Poll Interval
	6.1.2.6 Restore TimeInterval.

	6.1.3 ConflictMonitor
	6.1.3.1 Enabling and Starting ConflictMonitor

	6.1.4 Experiments
	6.1.4.1 Experiment #1: start Notepad
	6.1.4.2 Experiment #2: resolving the conflict
	6.1.4.3 Experiment #3: restoring the state
	6.1.4.4 Experiment #4: making conflict inactive
	6.1.4.5 Experiment #5: continuous Notepad enforcement
	6.1.4.6 Experiment #6: restore the state
	6.1.4.7 Experiment #7: IsApplicable=false
	6.1.4.8 Experiment #8: Failure to resolve a conflict
	6.1.4.9 Experiment #9
	6.1.4.10 Experiment #10: Zombie state
	6.1.4.11 Experiment #11: restore the state

	6.2 Lesson 2: Streamlining Scripts Using Resources
	6.2.1 Divide and Concur
	6.2.2 NotepadCalc Deficiency
	6.2.3 Streamlining NotepadCalc
	6.2.3.1 IsCalcRunning Definition
	6.2.3.2 IsCalcNotRunning Definition
	6.2.3.3 <not.ref> Operator

	6.2.4 Conflict Definition
	6.2.5 Experiments

	6.3 Lesson 3: User-Triggered Actions
	6.3.1 Conflict Definition
	6.3.2 Experiments
	6.3.2.1 Experiment #1: Setting the Initial state
	6.3.2.2 Experiment #2: Resolving the Conflict
	6.3.2.3 Experiment #3: Restoring the State

	6.4 Lesson 4: Learning the Simulation Environment
	6.4.1 Conflict Definition
	6.4.1.1 Resolve Condition Definition
	6.4.1.2 Restore State Definition
	6.4.1.3 IsApplicable
	6.4.1.4 ResolveConflict
	6.4.1.4.1 Triggers
	6.4.1.4.2 Condition
	6.4.1.4.3 Actions

	6.4.1.5 RestoreState

	6.4.2 Installing and Starting the Simulation Environment
	6.4.3 Experiments
	6.4.3.1 Experiment #1: Setting Initial state
	6.4.3.1.1 Networks

	6.4.3.2 Experiment #2: Experimenting with UI
	6.4.3.3 Experiment#3: Creating and Resolving the Conflict
	6.4.3.4 Experiment#4: Restore the State
	6.4.3.5 Experiment#5: Variation on Creating and Resolving the Conflict
	6.4.3.6 Experiment#6: Alternative Restore the State
	6.4.3.7 Experiment#7: Infinite Cycling Between Resolve and Restore

	6.5 Lesson 5: Self-Diagnostic and Script Debugging
	6.5.1 Introduction
	6.5.2 The Sample
	6.5.2.1 Custom Predicates
	6.5.2.2 Custom Actions
	6.5.2.3 Resolve Conflict
	6.5.2.4 Restore State

	6.5.3 Experiments
	6.5.4 Debug Messages
	6.5.5 Reading and Understanding the Logs

	7 Real Life Examples
	7.1 Cisco NAM
	7.1.1 Introduction
	7.1.2 Main Logic
	7.1.2.1 IsApplicable
	7.1.2.2 ResolveConflict
	7.1.2.3 RestoreState

	7.1.3 Custom Predicates
	7.1.4 Custom Actions

	7.2 OM / IPC Switching
	7.2.1 Introduction

	8 Advanced Topics
	8.1 ConflictDetector as a State Machine
	8.2 Serial Processing Nature

